ANALISA SISTEM PEMBANGKIT THERMOELEKTRIK DENGAN RANGKAIAN PARAREL PADA PEMANFAATAN PANAS BUANG MESIN TOYOTA COROLLA EFI
Main Article Content
Abstract
In the coming year is estimated to be growing energy needs increased by about 40% of
current needs, as we know from 100% fuel used by only about 30% that is used to drive the
car. part of the energy wasted in the form of the radiator and the gas is wasted purpose of
This analysis is to determine how to utilize waste heat energy in toyota corolla engine
efficiently into energy useful to the system and to determine the effect thermolektrik parallel
circuit thermoelektrik components generated strong currents and voltages generated
electricity in accordance with the type of materials used.
In writing this essay the author collected data - data with methods of literature,
interviews and observation.
There results can be conclude (1) for exhausted heat energy in Corrola EFI Toyota
engines are asw follows. Arranging thermoelektrik with parallel circuit which is mounted on
the exhaust side, turn the machine with 1000 rpm engine speed, gradually up to 300 0 rpm.
Start measuring the temperature of top and bottom of these thermoelektrik, and also a strong
measure of current, voltage to be produced thermoelektrik. There we received the results
from the engine exhaust heat is on with a series of parallel thermoelektrik. (2) there research
on the influence of these parallel series of studies thermoelektrik components that were
assembled in parallel to produce strong currents and tension resulting from the waste
exhaust heat is wasted. at 1000 rpm to produce strong currents of 0.5 degrees Celsius
ampere and voltage of 0.9 volt temperature - average above 45 degrees Celsius, the
temperature - average 95 degrees Celsius below 1500 rpm to produce strong currents of 0.9
ampere and voltage of 1 volt and temperature - average 59 degrees Celsius.
temperature - average below 111 degrees Celsius. 2000 rpm producing a strong current of 1
ampere and voltage of 1.2 volts and temperatures average 61 degrees Celsius, the
temperature - average below 119 degrees Celsius, 2500 rpm producing a strong current of
1.5 amperes and the voltage at 1, 5 volts and temperature - average 56 degrees Celsius, the
temperature – average below 123 degree Celsius. 3000 rpm to produce strong currents of 1.5
amperes and the voltage of 2 volts and temperature - average 61 degrees Celsius, the
temperature - average below 127 degrees Celsius. if understood parallel pengaruhrangkaian
is still very small to generate strong currents and voltages. the stronger the currents used, the
greater the stronger the smaller the current and voltage and vice versa.
Key words : ampere, temperature, voltase, thermoelektrik
current needs, as we know from 100% fuel used by only about 30% that is used to drive the
car. part of the energy wasted in the form of the radiator and the gas is wasted purpose of
This analysis is to determine how to utilize waste heat energy in toyota corolla engine
efficiently into energy useful to the system and to determine the effect thermolektrik parallel
circuit thermoelektrik components generated strong currents and voltages generated
electricity in accordance with the type of materials used.
In writing this essay the author collected data - data with methods of literature,
interviews and observation.
There results can be conclude (1) for exhausted heat energy in Corrola EFI Toyota
engines are asw follows. Arranging thermoelektrik with parallel circuit which is mounted on
the exhaust side, turn the machine with 1000 rpm engine speed, gradually up to 300 0 rpm.
Start measuring the temperature of top and bottom of these thermoelektrik, and also a strong
measure of current, voltage to be produced thermoelektrik. There we received the results
from the engine exhaust heat is on with a series of parallel thermoelektrik. (2) there research
on the influence of these parallel series of studies thermoelektrik components that were
assembled in parallel to produce strong currents and tension resulting from the waste
exhaust heat is wasted. at 1000 rpm to produce strong currents of 0.5 degrees Celsius
ampere and voltage of 0.9 volt temperature - average above 45 degrees Celsius, the
temperature - average 95 degrees Celsius below 1500 rpm to produce strong currents of 0.9
ampere and voltage of 1 volt and temperature - average 59 degrees Celsius.
temperature - average below 111 degrees Celsius. 2000 rpm producing a strong current of 1
ampere and voltage of 1.2 volts and temperatures average 61 degrees Celsius, the
temperature - average below 119 degrees Celsius, 2500 rpm producing a strong current of
1.5 amperes and the voltage at 1, 5 volts and temperature - average 56 degrees Celsius, the
temperature – average below 123 degree Celsius. 3000 rpm to produce strong currents of 1.5
amperes and the voltage of 2 volts and temperature - average 61 degrees Celsius, the
temperature - average below 127 degrees Celsius. if understood parallel pengaruhrangkaian
is still very small to generate strong currents and voltages. the stronger the currents used, the
greater the stronger the smaller the current and voltage and vice versa.
Key words : ampere, temperature, voltase, thermoelektrik
Article Details
Section
Articles
Copyright Notice
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).